Introduction to Image Processing

ECE 172A: Introduction to Intelligent Systems Course Introduction

Rahul Parhi Assistant Professor, ECE, UCSD

Winter 2025

Outline

- Course Overview and Logistics
- What is Machine Perception/Image Processing?
 - Definition
 - Digital imaging
- The basic objects: Images
 - Continuous/analog images
 - Discrete/sampled images
 - Digital images
- Components of an image-processing system
 - Typical image-analysis system
 - Acquisition, storage, and processing
- Conclusion

Course Overview

- ECE 172A is an undergraduate class that focuses on the fundamentals of machine perception (a.k.a. image processing).
- A tentative list of topics include
 - Basics of 2D signal processing
 - Continuous vs. discrete vs. digital images
 - Image sampling, acquisition, and quantization
 - Image filtering
 - Morphological processing
 - Image processing tasks (segmentation, preprocessing, feature extraction)
 - Image interpolation
 - Image transforms (DCT, wavelets, etc.) and transform coding
 - Image restoration, reconstruction, and inverse problems
 - Plug-and-play methods

Course Overview

- We will not follow any specific textbook, but the following are good references for the subject material.
 - B.K.P. Horn, Robot Vision, New York: McGraw-Hill, 1986.
 - W.K. Pratt, Digital Image Processing, New York: Wiley, 1991.
 - K.R. Castleman, Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1995.
 - A.K. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, NJ, Prentice-Hall, 1989.
 - B. Jähne, Digital Image Processing, Springer Berlin, Heidelberg, 2005.
 - J.C. Russ, The Image Processing Handbook, CRC Press, 5th edition, 2006.
 - R.C. Gonzalez, R.E. Woods, Digital Image Processing, 4th edition, Pearson, 2017.
 - W. Burger, M.J. Bruge, Digital Image Processing, Springer Cham, MA, 2022.
- The main reference will be these slides.

Slides will be posted immediately after each lecture.

Prerequisites

• This course assumes basic knowledge of **linear systems fundamentals** at the level of ECE 101. Some background in **probability** will be helpful (e.g., at the level of ECE 109). Familiarity with **Python** will be necessary for the programming components of the course.

Logistics

- Course website: https://sparsity.ucsd.edu/172a/
- Includes links to:
 - Canvas: Course materials, lecture recordings, etc.
 - Gradescope: homework submission and grades
 - Piazza: Q&A discussions and class announcements
 - * check Piazza regularly
- Grading:
 - 5-8 assignments (40%) (combination of "pen-and-paper" homework and programming lab exercises)
 - Midterm Exam (20%) (date is TBD)
 - **Final Exam (40%)** (Thursday, March 20th from 19:00–21:59)
- Late assignment policy:
 - Assignments submitted up to 24 hours late will be penalized by 10%. No late assignments will be accepted after 24 hours beyond the due date.

Lectures and Discussion

- **Lectures:** Tuesdays 17:00–19:50 (CENTR 216)
 - We have **170 minutes** per lecture. (MWF classes are 3×50 minutes)
 - We will have a combination of one or two $10~{\rm minute}$ breaks and/or ending class early every lecture.

I want the lectures to be **interactive**.

- Discussions: Mondays 17:00–17:50 (CENTR 212)
 - Led by the TA
 - These will be **valuable** to attend.
 - * Homework and programming advice
 - * Addressing any questions from lectures, Piazza, office hours, etc.
 - * Opportunity to work with your peers on homework and lab exercises. (We will release assignments on Mondays.)

Working together on assignments is a **great way** to learn (and make friends!)

Course Staff

- Rahul Parhi, Assistant Professor, ECE
- I joined UCSD in 2024 after two years of a postdoc at EPFL and a PhD from Univ. of Wisconsin–Madison.
- Office: Jacobs Hall (EBU1), Room 6406
- Office Hours: TBD
- Email: rahul@ucsd.edu

https://schej.it/e/cc3D8

- Niyas Attasseri, TA
- Office Hours: TBD
- Email: nattasseri@ucsd.edu

Outline

Course Overview and Logistics

- What is **Machine Perception/Image Processing**?
 - Definition
 - Digital imaging
- The basic objects: Images
 - Continuous/analog images
 - Discrete/sampled images
 - Digital images
- Components of an image-processing system
 - Typical image-analysis system
 - Acquisition, storage, and processing
- Conclusion

What is Image Processing?

Subjective appeal of images

"One picture is worth thousand words"

Guernica, 1937 (Picasso)

Digital imaging

Any manipulation of image-related data via a computer

Images in science

X-rays Wilhelm Röntgen

Double-helix DNA Rosalind Franklin

Cryo-electron microscopy

Jacques Dubochet

Black hole image reconstruction

Katie Bouman

History of Image Processing

→ Parallels the development of computers

60-70's \rightarrow Mainframes

Image processing was pioneered

80-90's \rightarrow PC

Analog cameras to CCD cameras Research labs to first real-world Minicomputers to PC (+grabber) (+DSP)

2000-2015 \rightarrow PowerPC

CCD cameras are everywhere More applications, web/internet General-purpose processors, software

Present → Parallelization and GPUs

Imaging is everywhere in science and society High-tech: devices, computer, software Machine learning and *deep learning*

First digital image ever created by Russell Kirsch. Size: 176×176 pixels

1957

Visual control in manufacturing.

Segmentation of **3D** medical images.

Autonomous vehicles.

Disciplines in Digital Imaging

Image processing

Image analysis

Computer vision

Computer graphics

Image reconstruction

Colloquially, these are all referred to as "image processing"

Image Processing

Definition: Transformation of pictorial information

Related fields/concepts: Signal processing, basic components of artificial neural networks (CNNs, in particular)

Example: enhancement

Original X-ray

Enhanced image

Image Processing (cont'd)

Example: **denoising**

Low-exposure digital photography

Example: **deblurring**

Saturn image (Hubble space telescope)

Example: deconvolution

3D fluorescence confocal microscopy

Image Analysis

Definition: Extraction of image features and quantitative information

Related fields/concepts: Pattern recognition, machine learning

Example: bioimage analysis

- Fluorescence microscopy
- Segmentation of the nucleus
- Segmentation of particles

Particle tracking

Image Analysis (cont'd)

Example: industrial vision

Quality control in production

Check food waste

Example: medical imaging

Lung segmentation based on texture information

Where is Image Processing?

Interdisciplinary field

Mathematics

Machine Learning

Photography

Signal Processing

Image Processing

Computer Technology

Optics

Application Areas

Electronics

Imaging Applications

- Medical Imaging
 - Contrast enhancement
 - Tomographic reconstruction
 - Screening of X-ray
 - Nuclear medicine, MRI
 - Computer-aided diagnosis
 - Ultrasound imaging

- Aerial/Satellite Imagery
 - Weather prediction
 - Crop assessment
 - Military recognition
 - Remote sensing
 - Geographic information systems

- Storage
 - Compression
 - Image archival
- Biology / Microscopy
 - Life cell imaging
 - Micro-array, DNA chip
 - Fluorescence microscopy
 - Super-resolution reconstruction
 - Neuroscience

- Multimedia
 - Digital photography
 - Electronic publishing
 - Watermarking
 - Image database indexing
 - Old-movie restoration
- Astronomy
 - Detection of stars

- Law enforcement
 - Surveillance
 - Biometrics
 - Identification
 - Number-plate recognition

- Industrial vision
 - Inspection
 - Product assembly/monitoring
 - Localization and recognition
 - Robot vision
 - Autonomous vehicles
- Archaeology
 - Restoration of image records
- Physics/Materials
 - Electron microscopy
 - Analysis of materials

Optical character recognition (OCR)

Example Image-Analysis Pipeline

The Basic Objects: Images

What even is an image?

Continuous/analog image

The real world is an analog world

"We are analog beings trapped in a digital world, and the worst part is, we did it to ourselves."

—Donald A. Norman, 1988, UCSD

Discrete/sampled image

How we reason about the images on our computer

Digital image

The images on our computer

Image Representation: Analog

Analog image (monochrome)

2D light intensity function: f(x,y)

 \bullet (x,y) are the spatial coordinates

Analog images are 2D functions

 $f: \mathbb{R} \times \mathbb{R} \to [f_{\min}, f_{\max}] \subset \mathbb{R}$

 $f: \mathbb{R}^2 \to [f_{\min}, f_{\max}]$

• The output f(x,y) is the **brightness** (or grayscale level) at (x,y)

$$f(x,y) \in [f_{\min}, f_{\max}]$$
 for all (x,y)

Image Representation: Analog (cont'd)

Image Representation: Discrete

Discrete image (monochrome)

 $\{f[k,l]\}$ with $k=0,\ldots,K-1$ and $l=0,\ldots,L-1$

K: number of columns

L: number of rows

• $K \times L$ array or matrix of pixels

$$\mathbf{F} = [F_{ij}]$$
 with $F_{ij} = f[i,j]$

Why is this not digital?

256x256 pixels

16x16 pixels

Image Representation: Digital

Digital image (monochrome)

Quantize the gray levels

 $f[k,l] \in \{0,1,2,\ldots,255\}$

256 gray levels

143	149	119	86	75	41	16	11
143	146	134	86	71	41	23	13
144	148	147	85	63	45	18	14
141	149	142	109	50	32	11	15
140	146	152	119	48	31	20	15
150	145	147	137	55	26	10	7
147	143	141	138	74	24	22	11
144	145	137	139	89	19	13	11

8 gray levels

General-purpose

8-bit: 0-255

Science

Sensitive camera: 16-bit

Computation

Floating-point representation 32-bit (float) or 64-bit (double)

Binary

1-bit: 0 or 1

2 gray levels

Beyond 2D? Generalized Images?

Any kind of higher-dimensional signal

- 3D images or **volumes**: f(x, y, z)
- Time or **video** sequence: f(x, y, t)
- Color or multi-spectral images: $f(x,y) = \begin{bmatrix} f_1(x,y) \\ f_2(x,y) \\ \vdots \\ f_p(x,y) \end{bmatrix}$

Question: How to get images?

- Devices sensitive to certain EM energy bands
 - X-ray, ultraviolet, visible, infrared, radio-astronomy
- Non-optical imaging
 - MRI, PET, ultrasound, seismic imaging

Examples

fMRI dataset

150 volumes $256 \times 256 \times 110$ voxels f(x,y,z,t)

Neuron tracing

Mosaic of micrographs: $90 \text{ planes of } 2048 \times 2048 \text{ pixels}$

Photofinish with a linear camera

2048 pixels 2000 lines/sec f(t,y)

Color Images

Color-Representation Systems

RGB: Red-Green-Blue

• HSB: Hue-Saturation-Brigthness

• CYMK: Cyan-Yellow-Magenta-Black

Components of an Imaging System

Image acquisition

Storage

Processing

Communication

Display

Image Acquisition

- Key elements of an acquisition system
 - Sampling aperture
 - Light sensor: light intensity \rightarrow electric signal
 - Quantizer
- Detector: Charge-coupled devices (CCDs)
 - Single IC device \rightarrow low cost, compact
 - Array of photosensitive cells
 - Low geometric distortions
 - Linear intensity output
- Illumination
 - Optical system / Photography techniques
 - Lighting
 - Depth of field / Aperture
 - Motion control

Digital Image

- Output signal
 - Video signal: TV signal 4:3 (old) 16:9 (modern) aspect ratio
 - Digital output
 - * Compressed / uncompressed
 - * Processed on chip
- Data
 - Gray-level picture: $512 \times 512 \times 8$ bits = 262 KB
 - Photography of smartphone (color): 13 MB
 - Medical imaging CT Scan: $256 \times 256 \times 256 \times 16$ bits = 32 MB
 - Whole slide image (digital pathology): $50,000 \times 50,000 \times 24$ bits
- Storage
 - Short-term: RAM (32 GB) vs. long-term: Hard disk (20 TB)
 - Store pixels and metadata (compressed / uncompressed)
 - * JPEG, PNG, etc.

Processing Tools

- Powerful computers
 - < 1990 mainframes or specific hardware</p>
 - 1995-2015: General-purpose PCs, CPUs
 - > 2015: CPU + GPU (deep learning) + HPC (servers)
- System integration
 - Smart camerasCCD + Processor + RAM

- Image-processing software
 - Desktop: Photoshop, GIMP, etc.
 - Commercial tools: MATLAB, LabView, etc.
 - Programming: Python, Java, etc.

Conclusion

What is the future of image processing? Many indicators of growth.

- Economical factors
 - Declining cost of computers
 - Increasing availability of equipment (digitizers and displays)
- New technology trends
 - Processing capacities: Powerful CPUs-Parallelization-GPU
 - Acquisition devices: CCD, CMOS cameras
 - Storage: Large RAM, low-cost, high-capacity fast storage
 - High-resolution color display systems
- New applications
 - Consumer products: digital photography, desktop publishing, HDTV
 - Biomedical: digital radiography, ultrasound, fluorescence microscopy, etc.
 - Science: everywhere, from nano-scale to astronomy scale
 - Industry: inspection, and scientific
 - Security: traffic monitoring, biometry

Highly employable field!